Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Existence and uniqueness of global solutions to the stochastic heat equation with super-linear drift on an unbounded spatial domain (2106.13221v3)

Published 24 Jun 2021 in math.PR

Abstract: We prove the existence and uniqueness of global solutions to the semilinear stochastic heat equation on an unbounded spatial domain with forcing terms that grow superlinearly and satisfy an Osgood condition $\int 1/|f(u)|du = +\infty$ along with additional restrictions. For example, consider the forcing $f(u) = u \log(ee + |u|)\log(\log(ee+|u|))$. A new dynamic weighting procedure is introduced to control the solutions, which are unbounded in space.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)