Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetric Wasserstein Autoencoders (2106.13024v1)

Published 24 Jun 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Leveraging the framework of Optimal Transport, we introduce a new family of generative autoencoders with a learnable prior, called Symmetric Wasserstein Autoencoders (SWAEs). We propose to symmetrically match the joint distributions of the observed data and the latent representation induced by the encoder and the decoder. The resulting algorithm jointly optimizes the modelling losses in both the data and the latent spaces with the loss in the data space leading to the denoising effect. With the symmetric treatment of the data and the latent representation, the algorithm implicitly preserves the local structure of the data in the latent space. To further improve the quality of the latent representation, we incorporate a reconstruction loss into the objective, which significantly benefits both the generation and reconstruction. We empirically show the superior performance of SWAEs over the state-of-the-art generative autoencoders in terms of classification, reconstruction, and generation.

Summary

We haven't generated a summary for this paper yet.