Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

3-dimensional $Λ$-BMS Symmetry and its Deformations (2106.12874v2)

Published 24 Jun 2021 in hep-th, math-ph, and math.MP

Abstract: In this paper we study quantum group deformations of the infinite dimensional symmetry algebra of asymptotically AdS spacetimes in three dimensions. Building on previous results in the finite dimensional subalgebras we classify all possible Lie bialgebra structures and for selected examples, we explicitly construct the related Hopf algebras. Using cohomological arguments we show that this construction can always be performed by a so-called twist deformation. The resulting structures can be compared to the well-known $\kappa$-Poincar\'e Hopf algebras constructed on the finite dimensional Poincar\'e or (anti) de Sitter algebra. The dual $\kappa$ Minkowski spacetime is supposed to describe a specific non-commutative geometry. Importantly, we find that some incarnations of the $\kappa$-Poincar\'e can not be extended consistently to the infinite dimensional algebras. Furthermore, certain deformations can have potential physical applications if subalgebras are considered. Since the conserved charges associated with asymptotic symmetries in 3-dimensional form a centrally extended algebra we also discuss briefly deformations of such algebras. The presence of the full symmetry algebra might have observable consequences that could be used to rule out these deformations. }

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.