Band topology of pseudo-Hermitian phases through tensor Berry connections and quantum metric (2106.09648v2)
Abstract: Among non-Hermitian systems, pseudo-Hermitian phases represent a special class of physical models characterized by real energy spectra and by the absence of non-Hermitian skin effects. Here, we show that several pseudo-Hermitian phases in two and three dimensions can be built by employing $q$-deformed matrices, which are related to the representation of deformed algebras. Through this algebraic approach we present and study the pseudo-Hermitian version of well known Hermitian topological phases, raging from two-dimensional Chern insulators and time-reversal-invariant topological insulators to three-dimensional Weyl semimetals and chiral topological insulators. We analyze their topological bulk states through non-Hermitian generalizations of Abelian and non-Abelian tensor Berry connections and quantum metric. Although our pseudo-Hermitian models and their Hermitian counterparts share the same topological invariants, their band geometries are different. We indeed show that some of our pseudo-Hermitian phases naturally support nearly-flat topological bands, opening the route to the study of pseudo-Hermitian strongly-interacting systems. Finally, we provide an experimental protocol to realize our models and measure the full non-Hermitian quantum geometric tensor in synthetic matter.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.