Papers
Topics
Authors
Recent
Search
2000 character limit reached

Regularization-Induced Bias and Consistency in Recursive Least Squares

Published 16 Jun 2021 in eess.SY and cs.SY | (2106.08799v2)

Abstract: Within the context of recursive least squares (RLS) parameter estimation, the goal of the present paper is to study the effect of regularization-induced bias on the transient and asymptotic accuracy of the parameter estimates. We consider this question in three stages. First, we consider regression with random data, in which case persistency is guaranteed. Next, we apply RLS to finite-impulse-response (FIR) system identification and, finally, to infinite-impulse-response (IIR) system identification. For each case, we relate the condition number of the regressor matrix to the transient response and rate of convergence of the parameter estimates.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.