Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic Theory for Regularized System Identification Part I: Empirical Bayes Hyper-parameter Estimator (2209.12231v2)

Published 25 Sep 2022 in eess.SY, cs.SY, math.ST, and stat.TH

Abstract: Regularized system identification is the major advance in system identification in the last decade. Although many promising results have been achieved, it is far from complete and there are still many key problems to be solved. One of them is the asymptotic theory, which is about convergence properties of the model estimators as the sample size goes to infinity. The existing related results for regularized system identification are about the almost sure convergence of various hyper-parameter estimators. A common problem of those results is that they do not contain information on the factors that affect the convergence properties of those hyper-parameter estimators, e.g., the regression matrix. In this paper, we tackle problems of this kind for the regularized finite impulse response model estimation with the empirical Bayes (EB) hyper-parameter estimator and filtered white noise input. In order to expose and find those factors, we study the convergence in distribution of the EB hyper-parameter estimator, and the asymptotic distribution of its corresponding model estimator. For illustration, we run Monte Carlo simulations to show the efficacy of our obtained theoretical results.

Citations (5)

Summary

We haven't generated a summary for this paper yet.