Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Guarantees for Offline Stochastic Matching via new Ordered Contention Resolution Schemes (2106.06892v2)

Published 13 Jun 2021 in cs.DS and cs.DM

Abstract: Matching is one of the most fundamental and broadly applicable problems across many domains. In these diverse real-world applications, there is often a degree of uncertainty in the input which has led to the study of stochastic matching models. Here, each edge in the graph has a known, independent probability of existing derived from some prediction. Algorithms must probe edges to determine existence and match them irrevocably if they exist. Further, each vertex may have a patience constraint denoting how many of its neighboring edges can be probed. We present new ordered contention resolution schemes yielding improved approximation guarantees for some of the foundational problems studied in this area. For stochastic matching with patience constraints in general graphs, we provide a 0.382-approximate algorithm, significantly improving over the previous best 0.31-approximation of Baveja et al. (2018). When the vertices do not have patience constraints, we describe a 0.432-approximate random order probing algorithm with several corollaries such as an improved guarantee for the Prophet Secretary problem under Edge Arrivals. Finally, for the special case of bipartite graphs with unit patience constraints on one of the partitions, we show a 0.632-approximate algorithm that improves on the recent $1/3$-guarantee of Hikima et al. (2021).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Brian Brubach (16 papers)
  2. Nathaniel Grammel (13 papers)
  3. Will Ma (43 papers)
  4. Aravind Srinivasan (47 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.