Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improved Approximation Algorithms for Stochastic-Matching Problems

Published 14 Oct 2020 in cs.DS | (2010.08142v1)

Abstract: We consider the Stochastic Matching problem, which is motivated by applications in kidney exchange and online dating. In this problem, we are given an undirected graph. Each edge is assigned a known, independent probability of existence and a positive weight (or profit). We must probe an edge to discover whether or not it exists. Each node is assigned a positive integer called a timeout (or a patience). On this random graph we are executing a process, which probes the edges one-by-one and gradually constructs a matching. The process is constrained in two ways. First, if a probed edge exists, it must be added irrevocably to the matching (the query-commit model). Second, the timeout of a node $v$ upper-bounds the number of edges incident to $v$ that can be probed. The goal is to maximize the expected weight of the constructed matching. For this problem, Bansal et al. (Algorithmica 2012) provided a $0.33$-approximation algorithm for bipartite graphs and a $0.25$-approximation for general graphs. We improve the approximation factors to $0.39$ and $0.269$, respectively. The main technical ingredient in our result is a novel way of probing edges according to a not-uniformly-random permutation. Patching this method with an algorithm that works best for large-probability edges (plus additional ideas) leads to our improved approximation factors.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.