Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

$\sqrt{\log t}$-superdiffusivity for a Brownian particle in the curl of the 2d GFF (2106.06264v3)

Published 11 Jun 2021 in math.PR

Abstract: The present work is devoted to the study of the large time behaviour of a critical Brownian diffusion in two dimensions, whose drift is divergence-free, ergodic and given by the curl of the 2-dimensional Gaussian Free Field. We prove the conjecture, made in [B. T\'oth, B. Valk\'o, J. Stat. Phys., 2012], according to which the diffusion coefficient $D(t)$ diverges as $\sqrt{\log t}$ for $t\to\infty$. Starting from the fundamental work by Alder and Wainwright [B. Alder, T. Wainright, Phys. Rev. Lett. 1967], logarithmically superdiffusive behaviour has been predicted to occur for a wide variety of out-of-equilibrium systems in the critical spatial dimension $d=2$. Examples include the diffusion of a tracer particle in a fluid, self-repelling polymers and random walks, Brownian particles in divergence-free random environments, and, more recently, the 2-dimensional critical Anisotropic KPZ equation. Even if in all of these cases it is expected that $D(t)\sim\sqrt{\log t}$, to the best of the authors' knowledge, this is the first instance in which such precise asymptotics is rigorously established.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.