Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

To The Point: Correspondence-driven monocular 3D category reconstruction (2106.05662v1)

Published 10 Jun 2021 in cs.CV

Abstract: We present To The Point (TTP), a method for reconstructing 3D objects from a single image using 2D to 3D correspondences learned from weak supervision. We recover a 3D shape from a 2D image by first regressing the 2D positions corresponding to the 3D template vertices and then jointly estimating a rigid camera transform and non-rigid template deformation that optimally explain the 2D positions through the 3D shape projection. By relying on 3D-2D correspondences we use a simple per-sample optimization problem to replace CNN-based regression of camera pose and non-rigid deformation and thereby obtain substantially more accurate 3D reconstructions. We treat this optimization as a differentiable layer and train the whole system in an end-to-end manner. We report systematic quantitative improvements on multiple categories and provide qualitative results comprising diverse shape, pose and texture prediction examples. Project website: https://fkokkinos.github.io/to_the_point/.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com