Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vector Symbolic Architectures as a Computing Framework for Emerging Hardware (2106.05268v2)

Published 9 Jun 2021 in cs.AR and cs.AI

Abstract: This article reviews recent progress in the development of the computing framework vector symbolic architectures (VSA) (also known as hyperdimensional computing). This framework is well suited for implementation in stochastic, emerging hardware, and it naturally expresses the types of cognitive operations required for AI. We demonstrate in this article that the field-like algebraic structure of VSA offers simple but powerful operations on high-dimensional vectors that can support all data structures and manipulations relevant to modern computing. In addition, we illustrate the distinguishing feature of VSA, "computing in superposition," which sets it apart from conventional computing. It also opens the door to efficient solutions to the difficult combinatorial search problems inherent in AI applications. We sketch ways of demonstrating that VSA are computationally universal. We see them acting as a framework for computing with distributed representations that can play a role of an abstraction layer for emerging computing hardware. This article serves as a reference for computer architects by illustrating the philosophy behind VSA, techniques of distributed computing with them, and their relevance to emerging computing hardware, such as neuromorphic computing.

Citations (48)

Summary

We haven't generated a summary for this paper yet.