Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recursive Binding for Similarity-Preserving Hypervector Representations of Sequences (2201.11691v2)

Published 27 Jan 2022 in cs.AI

Abstract: Hyperdimensional computing (HDC), also known as vector symbolic architectures (VSA), is a computing framework used within artificial intelligence and cognitive computing that operates with distributed vector representations of large fixed dimensionality. A critical step for designing the HDC/VSA solutions is to obtain such representations from the input data. Here, we focus on sequences and propose their transformation to distributed representations that both preserve the similarity of identical sequence elements at nearby positions and are equivariant to the sequence shift. These properties are enabled by forming representations of sequence positions using recursive binding and superposition operations. The proposed transformation was experimentally investigated with symbolic strings used for modeling human perception of word similarity. The obtained results are on a par with more sophisticated approaches from the literature. The proposed transformation was designed for the HDC/VSA model known as Fourier Holographic Reduced Representations. However, it can be adapted to some other HDC/VSA models.

Citations (7)

Summary

We haven't generated a summary for this paper yet.