Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Softmax Confidence and Uncertainty (2106.04972v1)

Published 9 Jun 2021 in cs.LG, cs.AI, and stat.ML

Abstract: It is often remarked that neural networks fail to increase their uncertainty when predicting on data far from the training distribution. Yet naively using softmax confidence as a proxy for uncertainty achieves modest success in tasks exclusively testing for this, e.g., out-of-distribution (OOD) detection. This paper investigates this contradiction, identifying two implicit biases that do encourage softmax confidence to correlate with epistemic uncertainty: 1) Approximately optimal decision boundary structure, and 2) Filtering effects of deep networks. It describes why low-dimensional intuitions about softmax confidence are misleading. Diagnostic experiments quantify reasons softmax confidence can fail, finding that extrapolations are less to blame than overlap between training and OOD data in final-layer representations. Pre-trained/fine-tuned networks reduce this overlap.

Citations (80)

Summary

We haven't generated a summary for this paper yet.