Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Turing: an Accurate and Interpretable Multi-Hypothesis Cross-Domain Natural Language Database Interface (2106.04559v1)

Published 8 Jun 2021 in cs.CL

Abstract: A natural language database interface (NLDB) can democratize data-driven insights for non-technical users. However, existing Text-to-SQL semantic parsers cannot achieve high enough accuracy in the cross-database setting to allow good usability in practice. This work presents Turing, a NLDB system toward bridging this gap. The cross-domain semantic parser of Turing with our novel value prediction method achieves $75.1\%$ execution accuracy, and $78.3\%$ top-5 beam execution accuracy on the Spider validation set. To benefit from the higher beam accuracy, we design an interactive system where the SQL hypotheses in the beam are explained step-by-step in natural language, with their differences highlighted. The user can then compare and judge the hypotheses to select which one reflects their intention if any. The English explanations of SQL queries in Turing are produced by our high-precision natural language generation system based on synchronous grammars.

Citations (2)

Summary

We haven't generated a summary for this paper yet.