Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Average (Edge-)Connectivity of Minimally $k$-(Edge-)Connected Graphs (2106.04083v2)

Published 8 Jun 2021 in math.CO and cs.DM

Abstract: Let $G$ be a graph of order $n$ and let $u,v$ be vertices of $G$. Let $\kappa_G(u,v)$ denote the maximum number of internally disjoint $u$-$v$ paths in $G$. Then the average connectivity $\overline{\kappa}(G)$ of $G$, is defined as $ \overline{\kappa}(G)=\sum_{{u,v}\subseteq V(G)} \kappa_G(u,v)/\tbinom{n}{2}. $ If $k \ge 1$ is an integer, then $G$ is minimally $k$-connected if $\kappa(G)=k$ and $\kappa(G-e) < k$ for every edge $e$ of $G$. We say that $G$ is an optimal minimally $k$-connected graph if $G$ has maximum average connectivity among all minimally $k$-connected graphs of order $n$. Based on a recent structure result for minimally 2-connected graphs we conjecture that, for every integer $k \ge3$, if $G$ is an optimal minimally $k$-connected graph of order $n\geq 2k+1$, then $G$ is bipartite, with the set of vertices of degree $k$ and the set of vertices of degree exceeding $k$ as its partite sets. We show that if this conjecture is true, then $\overline{\kappa}(G)< 9k/8$ for every minimally $k$-connected graph $G$. For every $k \ge 3$, we describe an infinite family of minimally $k$-connected graphs whose average connectivity is asymptotically $9k/8$. Analogous results are established for the average edge-connectivity of minimally $k$-edge-connected graphs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lucas Mol (31 papers)
  2. Ortrud R. Oellermann (13 papers)
  3. Vibhav Oswal (1 paper)
Citations (2)

Summary

We haven't generated a summary for this paper yet.