Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Colouring graphs with constraints on connectivity (1505.01616v2)

Published 7 May 2015 in math.CO and cs.CC

Abstract: A graph $G$ has maximal local edge-connectivity $k$ if the maximum number of edge-disjoint paths between every pair of distinct vertices $x$ and $y$ is at most $k$. We prove Brooks-type theorems for $k$-connected graphs with maximal local edge-connectivity $k$, and for any graph with maximal local edge-connectivity 3. We also consider several related graph classes defined by constraints on connectivity. In particular, we show that there is a polynomial-time algorithm that, given a 3-connected graph $G$ with maximal local connectivity 3, outputs an optimal colouring for $G$. On the other hand, we prove, for $k \ge 3$, that $k$-colourability is NP-complete when restricted to minimally $k$-connected graphs, and 3-colourability is NP-complete when restricted to $(k-1)$-connected graphs with maximal local connectivity $k$. Finally, we consider a parameterization of $k$-colourability based on the number of vertices of degree at least $k+1$, and prove that, even when $k$ is part of the input, the corresponding parameterized problem is FPT.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Pierre Aboulker (38 papers)
  2. Nick Brettell (30 papers)
  3. Frédéric Havet (28 papers)
  4. Nicolas Trotignon (79 papers)
  5. Dániel Marx (79 papers)
Citations (14)