Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Bandit Feedback in Online Multiclass Classification (2106.03596v1)

Published 7 Jun 2021 in cs.LG

Abstract: We study the problem of online multiclass classification in a setting where the learner's feedback is determined by an arbitrary directed graph. While including bandit feedback as a special case, feedback graphs allow a much richer set of applications, including filtering and label efficient classification. We introduce Gappletron, the first online multiclass algorithm that works with arbitrary feedback graphs. For this new algorithm, we prove surrogate regret bounds that hold, both in expectation and with high probability, for a large class of surrogate losses. Our bounds are of order $B\sqrt{\rho KT}$, where $B$ is the diameter of the prediction space, $K$ is the number of classes, $T$ is the time horizon, and $\rho$ is the domination number (a graph-theoretic parameter affecting the amount of exploration). In the full information case, we show that Gappletron achieves a constant surrogate regret of order $B2K$. We also prove a general lower bound of order $\max\big{B2K,\sqrt{T}\big}$ showing that our upper bounds are not significantly improvable. Experiments on synthetic data show that for various feedback graphs, our algorithm is competitive against known baselines.

Citations (11)

Summary

We haven't generated a summary for this paper yet.