Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved High-Probability Regret for Adversarial Bandits with Time-Varying Feedback Graphs (2210.01376v2)

Published 4 Oct 2022 in cs.LG and stat.ML

Abstract: We study high-probability regret bounds for adversarial $K$-armed bandits with time-varying feedback graphs over $T$ rounds. For general strongly observable graphs, we develop an algorithm that achieves the optimal regret $\widetilde{\mathcal{O}}((\sum_{t=1}T\alpha_t){1/2}+\max_{t\in[T]}\alpha_t)$ with high probability, where $\alpha_t$ is the independence number of the feedback graph at round $t$. Compared to the best existing result [Neu, 2015] which only considers graphs with self-loops for all nodes, our result not only holds more generally, but importantly also removes any $\text{poly}(K)$ dependence that can be prohibitively large for applications such as contextual bandits. Furthermore, we also develop the first algorithm that achieves the optimal high-probability regret bound for weakly observable graphs, which even improves the best expected regret bound of [Alon et al., 2015] by removing the $\mathcal{O}(\sqrt{KT})$ term with a refined analysis. Our algorithms are based on the online mirror descent framework, but importantly with an innovative combination of several techniques. Notably, while earlier works use optimistic biased loss estimators for achieving high-probability bounds, we find it important to use a pessimistic one for nodes without self-loop in a strongly observable graph.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Haipeng Luo (99 papers)
  2. Hanghang Tong (137 papers)
  3. Mengxiao Zhang (42 papers)
  4. Yuheng Zhang (86 papers)
Citations (5)