Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Stochastic Linear Contextual Bandits Under Adversarial Attacks (2106.02978v3)

Published 5 Jun 2021 in stat.ML and cs.LG

Abstract: Stochastic linear contextual bandit algorithms have substantial applications in practice, such as recommender systems, online advertising, clinical trials, etc. Recent works show that optimal bandit algorithms are vulnerable to adversarial attacks and can fail completely in the presence of attacks. Existing robust bandit algorithms only work for the non-contextual setting under the attack of rewards and cannot improve the robustness in the general and popular contextual bandit environment. In addition, none of the existing methods can defend against attacked context. In this work, we provide the first robust bandit algorithm for stochastic linear contextual bandit setting under a fully adaptive and omniscient attack with sub-linear regret. Our algorithm not only works under the attack of rewards, but also under attacked context. Moreover, it does not need any information about the attack budget or the particular form of the attack. We provide theoretical guarantees for our proposed algorithm and show by experiments that our proposed algorithm improves the robustness against various kinds of popular attacks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Qin Ding (6 papers)
  2. Cho-Jui Hsieh (211 papers)
  3. James Sharpnack (34 papers)
Citations (31)

Summary

We haven't generated a summary for this paper yet.