Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

John praised Mary because he? Implicit Causality Bias and Its Interaction with Explicit Cues in LMs (2106.01060v1)

Published 2 Jun 2021 in cs.CL

Abstract: Some interpersonal verbs can implicitly attribute causality to either their subject or their object and are therefore said to carry an implicit causality (IC) bias. Through this bias, causal links can be inferred from a narrative, aiding language comprehension. We investigate whether pre-trained LLMs (PLMs) encode IC bias and use it at inference time. We find that to be the case, albeit to different degrees, for three distinct PLM architectures. However, causes do not always need to be implicit -- when a cause is explicitly stated in a subordinate clause, an incongruent IC bias associated with the verb in the main clause leads to a delay in human processing. We hypothesize that the temporary challenge humans face in integrating the two contradicting signals, one from the lexical semantics of the verb, one from the sentence-level semantics, would be reflected in higher error rates for models on tasks dependent on causal links. The results of our study lend support to this hypothesis, suggesting that PLMs tend to prioritize lexical patterns over higher-order signals.

Citations (11)

Summary

We haven't generated a summary for this paper yet.