Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Second-Order Asymptotically Optimal Statistical Classification (1806.00739v3)

Published 3 Jun 2018 in cs.IT, cs.LG, and math.IT

Abstract: Motivated by real-world machine learning applications, we analyze approximations to the non-asymptotic fundamental limits of statistical classification. In the binary version of this problem, given two training sequences generated according to two {\em unknown} distributions $P_1$ and $P_2$, one is tasked to classify a test sequence which is known to be generated according to either $P_1$ or $P_2$. This problem can be thought of as an analogue of the binary hypothesis testing problem but in the present setting, the generating distributions are unknown. Due to finite sample considerations, we consider the second-order asymptotics (or dispersion-type) tradeoff between type-I and type-II error probabilities for tests which ensure that (i) the type-I error probability for {\em all} pairs of distributions decays exponentially fast and (ii) the type-II error probability for a {\em particular} pair of distributions is non-vanishing. We generalize our results to classification of multiple hypotheses with the rejection option.

Citations (27)

Summary

We haven't generated a summary for this paper yet.