Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Graph-Theoretic Deep Representation Learning Method for Multi-Label Remote Sensing Image Retrieval (2106.00506v1)

Published 1 Jun 2021 in cs.CV

Abstract: This paper presents a novel graph-theoretic deep representation learning method in the framework of multi-label remote sensing (RS) image retrieval problems. The proposed method aims to extract and exploit multi-label co-occurrence relationships associated to each RS image in the archive. To this end, each training image is initially represented with a graph structure that provides region-based image representation combining both local information and the related spatial organization. Unlike the other graph-based methods, the proposed method contains a novel learning strategy to train a deep neural network for automatically predicting a graph structure of each RS image in the archive. This strategy employs a region representation learning loss function to characterize the image content based on its multi-label co-occurrence relationship. Experimental results show the effectiveness of the proposed method for retrieval problems in RS compared to state-of-the-art deep representation learning methods. The code of the proposed method is publicly available at https://git.tu-berlin.de/rsim/GT-DRL-CBIR .

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Gencer Sumbul (29 papers)
  2. Begüm Demir (61 papers)
Citations (9)
Youtube Logo Streamline Icon: https://streamlinehq.com