Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CrossASR++: A Modular Differential Testing Framework for Automatic Speech Recognition (2105.14881v2)

Published 31 May 2021 in cs.SE

Abstract: Developers need to perform adequate testing to ensure the quality of Automatic Speech Recognition (ASR) systems. However, manually collecting required test cases is tedious and time-consuming. Our recent work proposes CrossASR, a differential testing method for ASR systems. This method first utilizes Text-to-Speech (TTS) to generate audios from texts automatically and then feed these audios into different ASR systems for cross-referencing to uncover failed test cases. It also leverages a failure estimator to find failing test cases more efficiently. Such a method is inherently self-improvable: the performance can increase by leveraging more advanced TTS and ASR systems. So in this accompanying tool demo paper, we devote more engineering and propose CrossASR++, an easy-to-use ASR testing tool that can be conveniently extended to incorporate different TTS and ASR systems, and failure estimators. We also make CrossASR++ chunk texts from a given corpus dynamically and enable the estimator to work in a more effective and flexible way. We demonstrate that the new features can help CrossASR++ discover more failed test cases. Using the same TTS and ASR systems, CrossASR++ can uncover 26.2% more failed test cases for 4 ASRs than the original tool. Moreover, by simply adding one more ASR for cross-referencing, we can increase the number of failed test cases uncovered for each of the 4 ASR systems by 25.07%, 39.63%, 20.9\% and 8.17% respectively. We also extend CrossASR++ with 5 additional failure estimators. Compared to worst estimator, the best one can discover 10.41% more failed test cases within the same amount of time.

Citations (21)

Summary

We haven't generated a summary for this paper yet.