Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter Estimation for the SEIR Model Using Recurrent Nets (2105.14524v1)

Published 30 May 2021 in stat.ML and cs.LG

Abstract: The standard way to estimate the parameters $\Theta_\text{SEIR}$ (e.g., the transmission rate $\beta$) of an SEIR model is to use grid search, where simulations are performed on each set of parameters, and the parameter set leading to the least $L_2$ distance between predicted number of infections and observed infections is selected. This brute-force strategy is not only time consuming, as simulations are slow when the population is large, but also inaccurate, since it is impossible to enumerate all parameter combinations. To address these issues, in this paper, we propose to transform the non-differentiable problem of finding optimal $\Theta_\text{SEIR}$ to a differentiable one, where we first train a recurrent net to fit a small number of simulation data. Next, based on this recurrent net that is able to generalize SEIR simulations, we are able to transform the objective to a differentiable one with respect to $\Theta_\text{SEIR}$, and straightforwardly obtain its optimal value. The proposed strategy is both time efficient as it only relies on a small number of SEIR simulations, and accurate as we are able to find the optimal $\Theta_\text{SEIR}$ based on the differentiable objective. On two COVID-19 datasets, we observe that the proposed strategy leads to significantly better parameter estimations with a smaller number of simulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.