Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Dynamic Epidemiological Modelling for COVID-19 Forecasting in Multi-level Districts (2306.12457v1)

Published 21 Jun 2023 in cs.LG, cs.AI, and q-bio.PE

Abstract: Objective: COVID-19 has spread worldwide and made a huge influence across the world. Modeling the infectious spread situation of COVID-19 is essential to understand the current condition and to formulate intervention measurements. Epidemiological equations based on the SEIR model simulate disease development. The traditional parameter estimation method to solve SEIR equations could not precisely fit real-world data due to different situations, such as social distancing policies and intervention strategies. Additionally, learning-based models achieve outstanding fitting performance, but cannot visualize mechanisms. Methods: Thus, we propose a deep dynamic epidemiological (DDE) method that combines epidemiological equations and deep-learning advantages to obtain high accuracy and visualization. The DDE contains deep networks to fit the effect function to simulate the ever-changing situations based on the neural ODE method in solving variants' equations, ensuring the fitting performance of multi-level areas. Results: We introduce four SEIR variants to fit different situations in different countries and regions. We compare our DDE method with traditional parameter estimation methods (Nelder-Mead, BFGS, Powell, Truncated Newton Conjugate-Gradient, Neural ODE) in fitting the real-world data in the cases of countries (the USA, Columbia, South Africa) and regions (Wuhan in China, Piedmont in Italy). Our DDE method achieves the best Mean Square Error and Pearson coefficient in all five areas. Further, compared with the state-of-art learning-based approaches, the DDE outperforms all techniques, including LSTM, RNN, GRU, Random Forest, Extremely Random Trees, and Decision Tree. Conclusion: DDE presents outstanding predictive ability and visualized display of the changes in infection rates in different regions and countries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. D. Cyranoski, “What China’s coronavirus response can teach the rest of the world.” Nature, vol. 579, no. 7800, pp. 479–480, 2020.
  2. K. O. Kwok, H. H. H. Chan, Y. Huang, D. S. C. Hui, P. A. Tambyah, W. I. Wei, P. Y. K. Chau, S. Y. S. Wong, and J. W. T. Tang, “Inferring super-spreading from transmission clusters of COVID-19 in Hong Kong, Japan and Singapore.” Journal of Hospital Infection, vol. 105, no. 4, pp. 682–685, 2020.
  3. H. Fang, J. Chen, and J. Hu, “Modelling the SARS epidemic by a lattice-based Monte-Carlo simulation,” in IEEE Engineering in Medicine and Biology 27th Annual Conference, vol. 7, 2005, pp. 7470–7473.
  4. M. M. Saito, S. Imoto, R. Yamaguchi, H. Sato, H. Nakada, M. Kami, S. Miyano, and T. Higuchi, “Extension and verification of the SEIR model on the 2009 influenza a (H1N1) pandemic in Japan.” Bellman Prize in Mathematical Biosciences, vol. 246, no. 1, pp. 47–54, 2013.
  5. L. Peng, W. Yang, D. Zhang, C. Zhuge, and L. Hong, “Epidemic analysis of COVID-19 in China by dynamical modeling,” ArXiv preprint, vol. arXiv:2002.06563, 2020.
  6. Y. Wei, Z. Lu, Z. Du, Z. Zhang, Y. Zhao, S. Shen, B. Wang, Y. Hao, and F. Chen, “Fitting and forecasting the trend of COVID-19 by SEIR + CAQ dynamic model,” Chinese Journal of Epidemiology, vol. 41, no. 4, pp. 470–475, 2020.
  7. S. C. Choi and M. Ki, “Estimating the reproductive number and the outbreak size of COVID-19 in Korea.” Epidemiology and Health, vol. 42, pp. 1–10, 2020.
  8. S. Zhao, J. Yang, and M. Sawan, “Energy-efficient neural network for epileptic seizure prediction,” IEEE Trans. Biomed. Eng., vol. 69, no. 1, pp. 401–411, 2022.
  9. S. Faccioli, A. Facchinetti, G. Sparacino, G. Pillonetto, and S. D. Favero, “Linear model identification for personalized prediction and control in diabetes,” IEEE Trans. Biomed. Eng., vol. 69, no. 2, pp. 558–568, 2022.
  10. W. Wang, S. Wang, X. Wang, D. Liu, Y. Geng, and T. Wu, “A glucose-insulin mixture model and application to short-term hypoglycemia prediction in the night time,” IEEE Trans. Biomed. Eng., vol. 68, no. 3, pp. 834–845, 2021.
  11. J. Xie and Q. Wang, “Benchmarking machine learning algorithms on blood glucose prediction for type I diabetes in comparison with classical time-series models,” IEEE Trans. Biomed. Eng., vol. 67, no. 11, pp. 3101–3124, 2020.
  12. F. Rustam, A. A. Reshi, A. Mehmood, S. Ullah, B.-W. On, W. Aslam, and G. S. Choi, “Covid-19 future forecasting using supervised machine learning models,” IEEE Access, vol. 8, no. 8, pp. 101 489–101 499, 2020.
  13. Z. Yang, Z. Zeng, K. Wang, S. S. Wong, W. Liang, M. Zanin, P. Liu, X. Cao, Z. Gao, Z. Mai, J. Liang, X. Liu, S. Li, Y. Li, F. Ye, W. Guan, Y. Yang, F. Li, S. Luo, Y. Xie, B. Liu, Z. Wang, S. Zhang, Y. Wang, N. Zhong, and J. He, “Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions,” Journal of Thoracic Disease, vol. 12, no. 3, pp. 165–174, 2020.
  14. Y. Zhu, S. Wang, S. Wang, Q. Wu, L. Wang, H. Li, M. Wang, M. Niu, Y. Zha, and J. Tian, “Mix contrast for COVID-19 mild-to-critical prediction,” IEEE Trans. Biomed. Eng., vol. 68, no. 12, pp. 3725–3736, 2021.
  15. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary differential equations,” in Neural Information Processing Systems, 2018, pp. 6572–6583.
  16. A. Smirnova, L. deCamp, and G. Chowell, “Forecasting epidemics through nonparametric estimation of time-dependent transmission rates using the SEIR model.” Bulletin of Mathematical Biology, vol. 81, no. 11, pp. 4343–4365, 2019.
  17. M. U. Kraemer, C. H. Yang, B. Gutierrez, C. H. Wu, B. Klein, D. M. Pigott, L. du Plessis, N. R. Faria, R. Li, W. P. Hanage, J. S. Brownstein, M. Layan, A. Vespignani, H. Tian, C. Dye, O. G. Pybus, and S. V. Scarpino, “The effect of human mobility and control measures on the COVID-19 epidemic in China.” Science, vol. 368, no. 6490, pp. 493–497, 2020.
  18. M. Chinazzi, J. T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler, A. P. y Piontti, K. Mu, L. Rossi, K. Sun, C. Viboud, X. Xiong, H. Yu, M. E. Halloran, I. M. Longini, and A. Vespignani, “The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak.” Science, vol. 368, no. 6489, pp. 395–400, 2020.
  19. A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, R. M. Eggo, F. Sun, M. Jit, J. D. Munday, N. Davies, A. Gimma, K. van Zandvoort, H. Gibbs, J. Hellewell, C. I. Jarvis, S. Clifford, B. J. Quilty, N. I. Bosse, S. Abbott, P. Klepac, and S. Flasche, “Early dynamics of transmission and control of COVID-19: A mathematical modelling study.” Lancet Infectious Diseases, vol. 20, no. 5, pp. 553–558, 2020.
  20. D. Raj and B. George, “Quantifying the effect of quarantine control in COVID-19 infectious spread using machine learning,” MedRxiv preprint, vol. medRxiv:2020.04.03.20052084, 2020.
  21. J. M. Read, J. R. Bridgen, D. A. Cummings, A. Ho, and C. P. Jewell, “Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions,” MedRxiv preprint, vol. medRxiv:2020.01.23.20018549, 2020.
  22. B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, and J. Wu, “Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions,” Journal of Clinical Medicine, vol. 9, no. 462, pp. 1–13, 2020.
  23. J. T. Wu, K. Leung, and G. M. Leung, “Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study.” The Lancet, vol. 395, no. 10225, pp. 689–697, 2020.
  24. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J., vol. 7, no. 4, pp. 308–313, 1965.
  25. M. J. D. Powell, “An iterative method for finding stationary values of a function of several variables,” Comput. J., vol. 5, no. 2, pp. 147–151, 1962.
  26. I. A. R. Moghrabi, “Extra multistep BFGS updates in quasi-newton methods,” Int. J. Math. Math. Sci., vol. 2006, pp. 12 583:1–12 583:8, 2006.
  27. C. Hsia, W. Chiang, and C. Lin, “Preconditioned conjugate gradient methods in truncated newton frameworks for large-scale linear classification,” in Proc. ACML, J. Zhu and I. Takeuchi, Eds., vol. 95, 2018, pp. 312–326.
  28. B. Xu, M. U. Kraemer, B. Gutierrez, S. Mekaru, K. Sewalk, A. Loskill, L. Wang, E. Cohn, S. Hill, A. Zarebski, S. Li, C. H. Wu, E. Hulland, J. Morgan, S. Scarpino, J. Brownstein, O. Pybus, D. Pigott, and M. Kraemer, “Open access epidemiological data from the COVID-19 outbreak.” Lancet Infectious Diseases, vol. 20, no. 5, pp. 534–534, 2020.
  29. J. A. Backer, D. Klinkenberg, and J. Wallinga, “Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020.” Eurosurveillance, vol. 25, no. 5, pii. 2000062, pp. 1–6, 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Ruhan Liu (2 papers)
  2. Jiajia Li (43 papers)
  3. Yang Wen (13 papers)
  4. Huating Li (9 papers)
  5. Ping Zhang (437 papers)
  6. Bin Sheng (38 papers)
  7. David Dagan Feng (13 papers)