Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 86 tok/s
GPT OSS 120B 452 tok/s Pro
Kimi K2 211 tok/s Pro
2000 character limit reached

Finite irreducible modules of a class of $\mathbb{Z}^+$-graded Lie conformal algebras (2105.13657v2)

Published 28 May 2021 in math.RT

Abstract: In this paper, we introduce the notion of completely non-trivial module of a Lie conformal algebra. By this notion, we classify all finite irreducible modules of a class of $\mathbb{Z}+$-graded Lie conformal algebras $\mathcal{L}=\bigoplus_{i=0}{\infty} \mathbb{C}[\partial]L_i$ satisfying $ [{L_0}\lambda L_0]=(\partial+2\lambda)L_0,$ and $[{L_1}\lambda L_i]\neq 0$ for any $i\in \mathbb{Z}+$. These Lie conformal algebras include Block type Lie conformal algebra $\mathcal{B}(p)$ and map Virasoro Lie conformal algebra $\mathcal{V}(\mathbb{C}[T])=Vir\otimes \mathbb{C}[T]$. As a result, we show that all non-trivial finite irreducible modules of these algebras are free of rank one as a $\mathbb{C}[\partial]$-module.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)