Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-supervised Detransformation Autoencoder for Representation Learning in Open Set Recognition (2105.13557v2)

Published 28 May 2021 in cs.LG and cs.CV

Abstract: The objective of Open set recognition (OSR) is to learn a classifier that can reject the unknown samples while classifying the known classes accurately. In this paper, we propose a self-supervision method, Detransformation Autoencoder (DTAE), for the OSR problem. This proposed method engages in learning representations that are invariant to the transformations of the input data. Experiments on several standard image datasets indicate that the pre-training process significantly improves the model performance in the OSR tasks. Meanwhile, our proposed self-supervision method achieves significant gains in detecting the unknown class and classifying the known classes. Moreover, our analysis indicates that DTAE can yield representations that contain more target class information and less transformation information than RotNet.

Citations (5)

Summary

We haven't generated a summary for this paper yet.