Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Imaginative Generative Adversarial Network: Automatic Data Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action Recognition (2105.13061v2)

Published 27 May 2021 in cs.CV and cs.HC

Abstract: Deep learning approaches deliver state-of-the-art performance in recognition of spatiotemporal human motion data. However, one of the main challenges in these recognition tasks is limited available training data. Insufficient training data results in over-fitting and data augmentation is one approach to address this challenge. Existing data augmentation strategies based on scaling, shifting and interpolating offer limited generalizability and typically require detailed inspection of the dataset as well as hundreds of GPU hours for hyperparameter optimization. In this paper, we present a novel automatic data augmentation model, the Imaginative Generative Adversarial Network (GAN), that approximates the distribution of the input data and samples new data from this distribution. It is automatic in that it requires no data inspection and little hyperparameter tuning and therefore it is a low-cost and low-effort approach to generate synthetic data. We demonstrate our approach on small-scale skeleton-based datasets with a comprehensive experimental analysis. Our results show that the augmentation strategy is fast to train and can improve classification accuracy for both conventional neural networks and state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Junxiao Shen (17 papers)
  2. John Dudley (6 papers)
  3. Per Ola Kristensson (45 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.