Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (2105.12353v2)

Published 26 May 2021 in cs.IR

Abstract: Fairness is a crucial property in recommender systems. Although some online services have adopted fairness aware systems recently, many other services have not adopted them yet. In this work, we propose methods to enable the users to build their own fair recommender systems. Our methods can generate fair recommendations even when the service does not (or cannot) provide fair recommender systems. The key challenge is that a user does not have access to the log data of other users or the latent representations of items. This restriction prohibits us from adopting existing methods designed for service providers. The main idea is that a user has access to unfair recommendations shown by the service provider. Our methods leverage the outputs of an unfair recommender system to construct a new fair recommender system. We empirically validate that our proposed method improves fairness substantially without harming much performance of the original unfair system.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Ryoma Sato (33 papers)
Citations (9)