Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fredholm modules over categories, Connes periodicity and classes in cyclic cohomology (2105.11736v1)

Published 25 May 2021 in math.CT

Abstract: We replace a ring with a small $\mathbb C$-linear category $\mathcal{C}$, seen as a ring with several objects in the sense of Mitchell. We introduce Fredholm modules over this category and construct a Chern character taking values in the cyclic cohomology of $\mathcal C$. We show that this categorified Chern character is homotopy invariant and is well-behaved with respect to the periodicity operator in cyclic cohomology. For this, we also obtain a description of cocycles and coboundaries in the cyclic cohomology of $\mathcal C$ (and more generally, in the Hopf-cyclic cohomology of a Hopf module category) by means of DG-semicategories equipped with a trace on endomorphism spaces.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.