Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Non-commutative measure theory: Henkin and analytic functionals on $\mathrm{C}^*$-algebras (2105.11295v1)

Published 24 May 2021 in math.OA and math.FA

Abstract: Henkin functionals on non-commutative $\mathrm{C}*$-algebras have recently emerged as a pivotal link between operator theory and complex function theory in several variables. Our aim in this paper is characterize these functionals through a notion of absolute continuity, inspired by a seminal theorem of Cole and Range. To do this, we recast the problem as a question in non-commutative measure theory. We develop a Glicksberg--K\"onig--Seever decomposition of the dual space of a $\mathrm{C}*$-algebra into an absolutely continuous part and a singular part, relative to a fixed convex subset of states. Leveraging this tool, we show that Henkin functionals are absolutely continuous with respect to the so-called analytic functionals if and only if a certain compatibility condition is satisfied by the ambient weak-$*$ topology. In contrast with the classical setting, the issue of stability under absolute continuity is not automatic in this non-commutative framework, and we illustrate its key role in sharpening our description of Henkin functionals. Our machinery yields new insight when specialized to the multiplier algebras of the Drury--Arveson space and of the Dirichlet space, and to Popescu's noncommutative disc algebra. As another application, we make a contribution to the theory of non-commutative peak and interpolation sets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.