Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantitative Heegaard Floer cohomology and the Calabi invariant (2105.11026v2)

Published 23 May 2021 in math.SG, math.DS, and math.GT

Abstract: We define a new family of spectral invariants associated to certain Lagrangian links in compact and connected surfaces of any genus. We show that our invariants recover the Calabi invariant of Hamiltonians in their limit. As applications, we resolve several open questions from topological surface dynamics and continuous symplectic topology: we show that the group of Hamiltonian homeomorphisms of any compact surface with (possibly empty) boundary is not simple; we extend the Calabi homomorphism to the group of Hameomorphisms constructed by Oh-M\"uller; and, we construct an infinite dimensional family of quasimorphisms on the group of area and orientation preserving homeomorphisms of the two-sphere. Our invariants are inspired by recent work of Polterovich and Shelukhin defining and applying spectral invariants for certain classes of links in the two-sphere.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (75)
  1. Geometry of algebraic curves. Vol. I, volume 267 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1985.
  2. M. Asaoka and K. Irie. A C∞superscript𝐶C^{\infty}italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT closing lemma for Hamiltonian diffeomorphisms of closed surfaces. Geom. Funct. Anal., 26(5):1245–1254, 2016.
  3. A. Banyaga. Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique. Comment. Math. Helv., 53(2):174–227, 1978.
  4. A. Bertram and M. Thaddeus. On the quantum cohomology of a symmetric product of an algebraic curve. Duke Math. J., 108(2):329–362, 2001.
  5. P. Biran and O. Cornea. A Lagrangian quantum homology. In New perspectives and challenges in symplectic field theory, volume 49 of CRM Proc. Lecture Notes, pages 1–44. Amer. Math. Soc., Providence, RI, 2009.
  6. P. Biran and O. Cornea. Lagrangian topology and enumerative geometry. Geom. Topol., 16(2):963–1052, 2012.
  7. P. Biran and O. Cornea. Quantum structures for Lagrangian submanifolds. Preprint, arXiv:0708.4221, 2018.
  8. M. Bökstedt and N. M. Romão. On the curvature of vortex moduli spaces. Math. Z., 277(1-2):549–573, 2014.
  9. Quasi-morphisms on surface diffeomorphism groups. arXiv:1909.07164, to appear in JAMS, 2020.
  10. Conjugation-invariant norms on groups of geometric origin. Adv. Stud. Pure. Math., 52:221–250, 2008.
  11. E. Calabi. On the group of automorphisms of a symplectic manifold. Problems in analysis (Lectures at the Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969), pages 1–26, 1970.
  12. D. Calegari. What is stable commutator length? Notices of the AMS, pages 1100–1101, 2008.
  13. D. Calegari. scl, volume 20 of MSJ Memoirs. Mathematical Society of Japan, Tokyo, 2009.
  14. F. Charest and C. Woodward. Floer cohomology and flips. Mem. Amer. Math. Soc. (to appear). Available at arXiv:1508.01573, 2015.
  15. C.-H. Cho. Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus. Int. Math. Res. Not., (35):1803–1843, 2004.
  16. Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds. Asian J. Math., 10(4):773–814, 2006.
  17. Subleading asymptotics of link spectral invariants and homeomorphism groups of surfaces. arXiv:2206.10749, 2022.
  18. Proof of the simplicity conjecture. arXiv:2001.01792, 2020.
  19. PFH spectral invariants on the two-sphere and the large scale geometry of Hofer’s metric. arXiv:2102.04404, 2021.
  20. Torsion contact forms in three dimensions have two or infinitely many Reeb orbits. Geom. Topol., 23(7):3601–3645, 2019.
  21. The asymptotics of ECH capacities. Invent. Math., 199(1):187–214, 2015.
  22. Periodic Floer homology and the smooth closing lemma for area-preserving surface diffeomorphisms. arXiv:2110.02925, 2021.
  23. O. Edtmair and M. Hutchings. PFH spectral invariants and C∞superscript𝐶{C}^{\infty}italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT closing lemmas. arXiv:2110.02463, 2021.
  24. Transverse foliations of Seifert bundles and self homeomorphism of the circle. Comment. Math. Helv., 56:638–660, 1981.
  25. M. Entov and L. Polterovich. Calabi quasimorphism and quantum homology. Int. Math. Res. Not., (30):1635–1676, 2003.
  26. On continuity of quasimorphisms for symplectic maps. In Perspectives in analysis, geometry, and topology, volume 296 of Progr. Math., pages 169–197. Birkhäuser/Springer, New York, 2012. With an appendix by Michael Khanevsky.
  27. D. B. A. Epstein. The simplicity of certain groups of homeomorphisms. Compositio Math., 22:165–173, 1970.
  28. A. Fathi. Structure of the group of homeomorphisms preserving a good measure on a compact manifold. Ann. Sci. École Norm. Sup. (4), 13(1):45–93, 1980.
  29. A. Fathi. Sur l’homomorphisme de Calabi Diffc∞⁢(ℝ2,m)→ℝ→superscriptsubscriptDiff𝑐superscriptℝ2𝑚ℝ\mathrm{Diff}_{c}^{\infty}(\mathbb{R}^{2},m)\rightarrow\mathbb{R}roman_Diff start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_m ) → blackboard_R. Appears in: Transformations et homéomorphismes préservant la mesure. Systèmes dynamiques minimaux., Thèse Orsay, 1980.
  30. A. Floer. Morse theory for Lagrangian intersections. J. Differential Geom., 28(3):513–547, 1988.
  31. Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory. Mem. Amer. Math. Soc., 260(1254):x+266, 2019.
  32. J.-M. Gambaudo and E. Ghys. Enlacements asymptotiques. Topology, 36(6):1355–1379, 1997.
  33. E. Ghys. Knots and dynamics. In International Congress of Mathematicians. Vol. I, pages 247–277. Eur. Math. Soc., Zürich, 2007.
  34. P. Griffiths and J. Harris. Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original.
  35. R. Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.
  36. G. Higman. On infinite simple permutation groups. Publ. Math. Debrecen, 3:221–226 (1955), 1954.
  37. H. Hofer. On the topological properties of symplectic maps. Proc. Roy. Soc. Edinburgh Sect. A, 115(1-2):25–38, 1990.
  38. D. Huybrechts. Complex geometry. Universitext. Springer-Verlag, Berlin, 2005. An introduction.
  39. Y. Kawamoto. Homogeneous quasimorphisms, C0superscript𝐶0{C}^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT-topology and Lagrangian intersection. arXiv:2006.07844, 2020.
  40. A. Kouvidakis. Divisors on symmetric products of curves. Trans. Amer. Math. Soc., 337(1):117–128, 1993.
  41. F. Lalonde and D. McDuff. The geometry of symplectic energy. Ann. of Math. (2), 141(2):349–371, 1995.
  42. L. Lazzarini. Existence of a somewhere injective pseudo-holomorphic disc. Geom. Funct. Anal., 10(4):829–862, 2000.
  43. P. Le Calvez. Une version feuilletée équivariante du théorème de translation de Brouwer. Publ. Math. Inst. Hautes Études Sci., (102):1–98, 2005.
  44. P. Le Calvez. Periodic orbits of Hamiltonian homeomorphisms of surfaces. Duke Math. J., 133(1):125–184, 2006.
  45. Barcodes and area-preserving homeomorphisms. arXiv:1810.03139, 2018.
  46. R. Leclercq and F. Zapolsky. Spectral invariants for monotone Lagrangians. J. Topol. Anal., 10(3):627–700, 2018.
  47. R. Lipshitz. A cylindrical reformulation of Heegaard Floer homology. Geom. Topol., 10:955–1096, 2006. [Paging previously given as 955–1097].
  48. C. Y. Mak and I. Smith. Non-displaceable Lagrangian links in four-manifolds. Geom. Funct. Anal., 2021.
  49. S. Matsumoto. Arnold conjecture for surface homeomorphisms. In Proceedings of the French-Japanese Conference “Hyperspace Topologies and Applications” (La Bussière, 1997), volume 104, pages 191–214, 2000.
  50. D. McDuff and D. Salamon. J𝐽Jitalic_J-holomorphic curves and symplectic topology, volume 52 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, second edition, 2012.
  51. D. McDuff and D. Salamon. Introduction to symplectic topology. Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, third edition, 2017.
  52. Y.-G. Oh. Symplectic topology as the geometry of action functional. II. Pants product and cohomological invariants. Comm. Anal. Geom., 7(1):1–54, 1999.
  53. Y.-G. Oh. Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds. The breadth of symplectic and Poisson geometry. Progr. Math. 232, Birkhauser, Boston, pages 525–570, 2005.
  54. Y.-G. Oh. The group of Hamiltonian homeomorphisms and continuous Hamiltonian flows. In Symplectic topology and measure preserving dynamical systems, volume 512 of Contemp. Math., pages 149–177. Amer. Math. Soc., Providence, RI, 2010.
  55. Y.-G. Oh. Symplectic topology and Floer homology. Vol. 1, volume 28 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2015. Symplectic geometry and pseudoholomorphic curves.
  56. Y.-G. Oh. Symplectic topology and Floer homology. Vol. 2, volume 29 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2015. Floer homology and its applications.
  57. Y.-G. Oh and S. Müller. The group of Hamiltonian homeomorphisms and C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT–symplectic topology. J. Symplectic Geom., 5(2):167–219, 2007.
  58. P. Ozsváth and Z. Szabó. Holomorphic disks and topological invariants for closed three-manifolds. Ann. of Math. (2), 159(3):1027–1158, 2004.
  59. P. Ozsváth and Z. Szabó. Holomorphic disks, link invariants and the multi-variable Alexander polynomial. Algebr. Geom. Topol., 8(2):615–692, 2008.
  60. G. Pacienza. On the nef cone of symmetric products of a generic curve. Amer. J. Math., 125(5):1117–1135, 2003.
  61. T. Perutz. Hamiltonian handleslides for Heegaard Floer homology. In Proceedings of Gökova Geometry-Topology Conference 2007, pages 15–35. Gökova Geometry/Topology Conference (GGT), Gökova, 2008.
  62. L. Polterovich. The geometry of the group of symplectic diffeomorphisms. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2001.
  63. L. Polterovich and D. Rosen. Function theory on symplectic manifolds, volume 34 of CRM Monograph Series. American Mathematical Society, Providence, RI, 2014.
  64. L. Polterovich and E. Shelukhin. Lagrangian configurations and Hamiltonian maps. arXiv:2102.06118, 2021.
  65. J. Robbin and D. Salamon. The Maslov index for paths. Topology, 32(4):827–844, 1993.
  66. M. Schwarz. On the action spectrum for closed symplectically aspherical manifolds. Pacific J. Math., 193(2):419–461, 2000.
  67. P. Seidel. A biased view of symplectic cohomology. In Current developments in mathematics, 2006, pages 211–253. Int. Press, Somerville, MA, 2008.
  68. P. Seidel. Fukaya categories and Picard-Lefschetz theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008.
  69. P. Seidel. Abstract analogues of flux as symplectic invariants. Mém. Soc. Math. Fr. (N.S.), (137):135, 2014.
  70. S. Seyfaddini. C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT-limits of Hamiltonian paths and the Oh-Schwarz spectral invariants. Int. Math. Res. Not. IMRN, (21):4920–4960, 2013.
  71. S. Seyfaddini. The displaced disks problem via symplectic topology. C. R. Math. Acad. Sci. Paris, 351(21-22):841–843, 2013.
  72. T. Tsuboi. Homeomorphism groups of commutator width one. Proc. Am. Math. Soc., 141(5):1839–1847, 2013.
  73. M. Usher. Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms. Geom. Topol., 15(3):1313–1417, 2011.
  74. C. Viterbo. Symplectic topology as the geometry of generating functions. Math. Annalen, 292:685–710, 1992.
  75. F. Zapolsky. The Lagrangian Floer-quantum-PSS package and canonical orientations in Floer theory. arXiv:1507.02253, 2015.
Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.