Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Definite Non-Ancestral Relations and Structure Learning (2105.10350v1)

Published 20 May 2021 in cs.LG and stat.ME

Abstract: In causal graphical models based on directed acyclic graphs (DAGs), directed paths represent causal pathways between the corresponding variables. The variable at the beginning of such a path is referred to as an ancestor of the variable at the end of the path. Ancestral relations between variables play an important role in causal modeling. In existing literature on structure learning, these relations are usually deduced from learned structures and used for orienting edges or formulating constraints of the space of possible DAGs. However, they are usually not posed as immediate target of inference. In this work we investigate the graphical characterization of ancestral relations via CPDAGs and d-separation relations. We propose a framework that can learn definite non-ancestral relations without first learning the skeleton. This frame-work yields structural information that can be used in both score- and constraint-based algorithms to learn causal DAGs more efficiently.

Citations (1)

Summary

We haven't generated a summary for this paper yet.