Papers
Topics
Authors
Recent
Search
2000 character limit reached

Local limit theorems for a directed random walk on the backbone of a supercritical oriented percolation cluster

Published 19 May 2021 in math.PR | (2105.09030v1)

Abstract: We consider a directed random walk on the backbone of the supercritical oriented percolation cluster in dimensions $d+1$ with $d \ge 3$ being the spatial dimension. For this random walk we prove an annealed local central limit theorem and a quenched local limit theorem. The latter shows that the quenched transition probabilities of the random walk converge to the annealed transition probabilities reweighted by a function of the medium centred at the target site. This function is the density of the unique measure which is invariant for the point of view of the particle, is absolutely continuous with respect to the annealed measure and satisfies certain concentration properties.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.