Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Projections with logarithmic divergences (2105.07767v1)

Published 8 May 2021 in math.DG and stat.ME

Abstract: In information geometry, generalized exponential families and statistical manifolds with curvature are under active investigation in recent years. In this paper we consider the statistical manifold induced by a logarithmic $L{(\alpha)}$-divergence which generalizes the Bregman divergence. It is known that such a manifold is dually projectively flat with constant negative sectional curvature, and is closely related to the $\mathcal{F}{(\alpha)}$-family, a generalized exponential family introduced by the second author. Our main result constructs a dual foliation of the statistical manifold, i.e., an orthogonal decomposition consisting of primal and dual autoparallel submanifolds. This decomposition, which can be naturally interpreted in terms of primal and dual projections with respect to the logarithmic divergence, extends the dual foliation of a dually flat manifold studied by Amari. As an application, we formulate a new $L{(\alpha)}$-PCA problem which generalizes the exponential family PCA.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.