Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using social network and semantic analysis to analyze online travel forums and forecast tourism demand (2105.07727v1)

Published 17 May 2021 in econ.EM, cs.CL, and cs.SI

Abstract: Forecasting tourism demand has important implications for both policy makers and companies operating in the tourism industry. In this research, we applied methods and tools of social network and semantic analysis to study user-generated content retrieved from online communities which interacted on the TripAdvisor travel forum. We analyzed the forums of 7 major European capital cities, over a period of 10 years, collecting more than 2,660,000 posts, written by about 147,000 users. We present a new methodology of analysis of tourism-related big data and a set of variables which could be integrated into traditional forecasting models. We implemented Factor Augmented Autoregressive and Bridge models with social network and semantic variables which often led to a better forecasting performance than univariate models and models based on Google Trend data. Forum language complexity and the centralization of the communication network, i.e. the presence of eminent contributors, were the variables that contributed more to the forecasting of international airport arrivals.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. A Fronzetti Colladon (3 papers)
  2. B Guardabascio (1 paper)
  3. R Innarella (1 paper)
Citations (103)

Summary

We haven't generated a summary for this paper yet.