Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating the Significance of the Bellwether Effect to Improve Software Effort Prediction: Further Empirical Study (2105.07366v1)

Published 16 May 2021 in cs.SE

Abstract: Context: In addressing how best to estimate how much effort is required to develop software, a recent study found that using exemplary and recently completed projects [forming Bellwether moving windows (BMW)] in software effort prediction (SEP) models leads to relatively improved accuracy. More studies need to be conducted to determine whether the BMW yields improved accuracy in general, since different sizing and aging parameters of the BMW are known to affect accuracy. Objective: To investigate the existence of exemplary projects (Bellwethers) with defined window size and age parameters, and whether their use in SEP improves prediction accuracy. Method: We empirically investigate the moving window assumption based on the theory that the prediction outcome of a future event depends on the outcomes of prior events. Sampling of Bellwethers was undertaken using three introduced Bellwether methods (SSPM, SysSam, and RandSam). The ergodic Markov chain was used to determine the stationarity of the Bell-wethers. Results: Empirical results show that 1) Bellwethers exist in SEP and 2) the BMW has an approximate size of 50 to 80 exemplary projects that should not be more than 2 years old relative to the new projects to be estimated. Conclusion: The study's results add further weight to the recommended use of Bellwethers for improved prediction accuracy in SEP.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Solomon Mensah (2 papers)
  2. Jacky Keung (17 papers)
  3. Stephen G. MacDonell (85 papers)
  4. Michael Franklin Bosu (7 papers)
  5. Kwabena Ebo Bennin (10 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.