Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bellwethers: A Baseline Method For Transfer Learning (1703.06218v4)

Published 17 Mar 2017 in cs.SE

Abstract: Software analytics builds quality prediction models for software projects. Experience shows that (a) the more projects studied, the more varied are the conclusions; and (b) project managers lose faith in the results of software analytics if those results keep changing. To reduce this conclusion instability, we propose the use of "bellwethers": given N projects from a community the bellwether is the project whose data yields the best predictions on all others. The bellwethers offer a way to mitigate conclusion instability because conclusions about a community are stable as long as this bellwether continues as the best oracle. Bellwethers are also simple to discover (just wrap a for-loop around standard data miners). When compared to other transfer learning methods (TCA+, transfer Naive Bayes, value cognitive boosting), using just the bellwether data to construct a simple transfer learner yields comparable predictions. Further, bellwethers appear in many SE tasks such as defect prediction, effort estimation, and bad smell detection. We hence recommend using bellwethers as a baseline method for transfer learning against which future work should be compared

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Rahul Krishna (28 papers)
  2. Tim Menzies (128 papers)
Citations (73)

Summary

We haven't generated a summary for this paper yet.