Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Join-semilattices whose principal filters are pseudocomplemented lattices (2105.07276v1)

Published 15 May 2021 in math.LO

Abstract: This paper deals with join-semilattices whose sections, i.e. principal filters, are pseudocomplemented lattices. The pseudocomplement of a\vee b in the section [b,1] is denoted by a\rightarrow b and can be considered as the connective implication in a certain kind of intuitionistic logic. Contrary to the case of Brouwerian semilattices, sections need not be distributive lattices. This essentially allows possible applications in non-classical logics. We present a connection of the semilattices mentioned in the beginning with so-called non-classical implication semilattices which can be converted into I-algebras having everywhere defined operations. Moreover, we relate our structures to sectionally and relatively residuated semilattices which means that our logical structures are closely connected with substructural logics. We show that I-algebras form a congruence distributive, 3-permutable and weakly regular variety.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.