Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

An algebra over the operad of posets and structural binomial identities (2105.06633v7)

Published 14 May 2021 in math.CO and math.AT

Abstract: We study generating functions of strict and non-strict order polynomials of series-parallel posets, called order series. These order series are closely related to Ehrhart series and h*-polynomials of the associated order polytopes. We explain how they can be understood as algebras over a certain operad of posets. Our main results are based on the fact that the order series of chains form a basis in the space of order series. This allows to reduce the search space of an algorithm that finds for a given power series f, if possible, a poset P such that f is the generating function of the order polynomial of P. In terms of Ehrhart theory of order polytopes, the coordinates with respect to this basis describe the number of (internal) simplices in the canonical triangulation of the order polytope of P. Furthermore, we derive a new proof of the reciprocity theorem of Stanley. As an application, we find new identities for binomial coefficients and for finite partitions that allow for empty sets, and we describe properties of the negative hypergeometric distribution.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.