Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Inference Representation: Learning Graph Positional Embeddings with Anchor Path Encoding (2105.03821v2)

Published 9 May 2021 in cs.LG and cs.AI

Abstract: Learning node representations that incorporate information from graph structure benefits wide range of tasks on graph. The majority of existing graph neural networks (GNNs) have limited power in capturing position information for a given node. The idea of positioning nodes with selected anchors has been exploited, yet mainly relying on explicit labeling of distance information. Here we propose Graph Inference Representation (GIR), an anchor based GNN model encoding path information related to pre-selected anchors for each node. Abilities to get position-aware embeddings are theoretically and experimentally investigated on GIR and its core variants. Further, the complementarity between GIRs and typical GNNs is demonstrated. We show that GIRs get outperformed results in position-aware scenarios, and performances on typical GNNs could be improved by fusing GIR embeddings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.