Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LINN: Lifting Inspired Invertible Neural Network for Image Denoising (2105.03303v1)

Published 7 May 2021 in eess.IV and cs.CV

Abstract: In this paper, we propose an invertible neural network for image denoising (DnINN) inspired by the transform-based denoising framework. The proposed DnINN consists of an invertible neural network called LINN whose architecture is inspired by the lifting scheme in wavelet theory and a sparsity-driven denoising network which is used to remove noise from the transform coefficients. The denoising operation is performed with a single soft-thresholding operation or with a learned iterative shrinkage thresholding network. The forward pass of LINN produces an over-complete representation which is more suitable for denoising. The denoised image is reconstructed using the backward pass of LINN using the output of the denoising network. The simulation results show that the proposed DnINN method achieves results comparable to the DnCNN method while only requiring 1/4 of learnable parameters.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jun-Jie Huang (27 papers)
  2. Pier Luigi Dragotti (43 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.