Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Extended Jump Functions Benchmark for the Analysis of Randomized Search Heuristics (2105.03090v3)

Published 7 May 2021 in cs.NE and cs.AI

Abstract: Jump functions are the {most-studied} non-unimodal benchmark in the theory of randomized search heuristics, in particular, evolutionary algorithms (EAs). They have significantly improved our understanding of how EAs escape from local optima. However, their particular structure -- to leave the local optimum one can only jump directly to the global optimum -- raises the question of how representative such results are. For this reason, we propose an extended class $\textsc{Jump}{k,\delta}$ of jump functions that contain a valley of low fitness of width $\delta$ starting at distance $k$ from the global optimum. We prove that several previous results extend to this more general class: for all {$k \le \frac{n{1/3}}{\ln{n}}$} and $\delta < k$, the optimal mutation rate for the $(1+1)$~EA is $\frac{\delta}{n}$, and the fast $(1+1)$~EA runs faster than the classical $(1+1)$~EA by a factor super-exponential in $\delta$. However, we also observe that some known results do not generalize: the randomized local search algorithm with stagnation detection, which is faster than the fast $(1+1)$~EA by a factor polynomial in $k$ on $\textsc{Jump}_k$, is slower by a factor polynomial in $n$ on some $\textsc{Jump}{k,\delta}$ instances. Computationally, the new class allows experiments with wider fitness valleys, especially when they lie further away from the global optimum.

Citations (9)

Summary

We haven't generated a summary for this paper yet.