Dirac Composite Fermion Theory of General Jain's Sequences (2105.02092v2)
Abstract: We reconsider the composite fermion theory of general Jain's sequences with filling factor $\nu=N/(4N\pm1)$. We show that Goldman and Fradkin's proposal of a Dirac composite fermion leads to a violation of the Haldane bound on the coefficient of the static structure factor. To resolve this apparent contradiction, we add to the effective theory a gapped chiral mode (or modes) which already exists in the Fermi liquid state at $\nu=1/4$. We interpret the additional mode as an internal degree of freedom of the composite fermion, related to area-preserving deformations of the elementary droplet built up from electrons and correlation holes. In addition to providing a suitable static structure factor, our model also gives the expected Wen-Zee shift and a Hall conductivity that manifests Galilean invariance. We show that the charge density in the model satisfies the long-wavelength version of the Girvin-MacDonald-Platzman algebra.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.