Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Type IV-II codes over Z4 constructed from generalized bent functions (2105.01208v1)

Published 3 May 2021 in cs.IT, math.CO, and math.IT

Abstract: A Type IV-II Z4-code is a self-dual code over Z4 with the property that all Euclidean weights are divisible by eight and all codewords have even Hamming weight. In this paper we use generalized bent functions for a construction of self-orthogonal codes over Z4 of length $2m$, for $m$ odd, $m \geq 3$, and prove that for $m \geq 5$ those codes can be extended to Type IV-II Z4-codes. From that family of Type IV-II Z4-codes, we obtain a family of self-dual Type II binary codes by using Gray map. We also consider the weight distributions of the obtained codes and the structure of the supports of the minimum weight codewords.

Citations (1)

Summary

We haven't generated a summary for this paper yet.