Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-orthogonal codes over a non-unital ring and combinatorial matrices (2106.07124v1)

Published 14 Jun 2021 in cs.IT and math.IT

Abstract: There is a local ring $E$ of order $4,$ without identity for the multiplication, defined by generators and relations as $E=\langle a,b \mid 2a=2b=0,\, a2=a,\, b2=b,\,ab=a,\, ba=b\rangle.$ We study a special construction of self-orthogonal codes over $E,$ based on combinatorial matrices related to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly Regular Tournaments (DRT). We construct quasi self-dual codes over $E,$ and Type IV codes, that is, quasi self-dual codes whose all codewords have even Hamming weight. All these codes can be represented as formally self-dual additive codes over $\F_4.$ The classical invariant theory bound for the weight enumerators of this class of codesimproves the known bound on the minimum distance of Type IV codes over $E.$

Citations (6)

Summary

We haven't generated a summary for this paper yet.