Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Audio-Visual Consistency with Partial Supervision for Spatial Audio Generation (2105.00708v1)

Published 3 May 2021 in cs.SD, cs.CV, cs.MM, and eess.AS

Abstract: Human perceives rich auditory experience with distinct sound heard by ears. Videos recorded with binaural audio particular simulate how human receives ambient sound. However, a large number of videos are with monaural audio only, which would degrade the user experience due to the lack of ambient information. To address this issue, we propose an audio spatialization framework to convert a monaural video into a binaural one exploiting the relationship across audio and visual components. By preserving the left-right consistency in both audio and visual modalities, our learning strategy can be viewed as a self-supervised learning technique, and alleviates the dependency on a large amount of video data with ground truth binaural audio data during training. Experiments on benchmark datasets confirm the effectiveness of our proposed framework in both semi-supervised and fully supervised scenarios, with ablation studies and visualization further support the use of our model for audio spatialization.

Citations (20)

Summary

We haven't generated a summary for this paper yet.