Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Machine Learning Approaches to Packing Detection (2105.00473v1)

Published 2 May 2021 in cs.CR and cs.LG

Abstract: Packing is an obfuscation technique widely used by malware to hide the content and behavior of a program. Much prior research has explored how to detect whether a program is packed. This research includes a broad variety of approaches such as entropy analysis, syntactic signatures and more recently machine learning classifiers using various features. However, no robust results have indicated which algorithms perform best, or which features are most significant. This is complicated by considering how to evaluate the results since accuracy, cost, generalization capabilities, and other measures are all reasonable. This work explores eleven different machine learning approaches using 119 features to understand: which features are most significant for packing detection; which algorithms offer the best performance; and which algorithms are most economical.

Citations (4)

Summary

We haven't generated a summary for this paper yet.