Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Malware Detection at the Microarchitecture Level using Machine Learning Techniques (2005.12019v1)

Published 25 May 2020 in cs.CR

Abstract: Detection of malware cyber-attacks at the processor microarchitecture level has recently emerged as a promising solution to enhance the security of computer systems. Security mechanisms, such as hardware-based malware detection, use machine learning algorithms to classify and detect malware with the aid of Hardware Performance Counters (HPCs) information. The ML classifiers are fed microarchitectural data extracted from Hardware Performance Counters (HPCs), which contain behavioral data about a software program. These HPCs are captured at run-time to model the program's behavior. Since the amount of HPCs are limited per processor, many techniques employ feature reduction to reduce the amount of HPCs down to the most essential attributes. Previous studies have already used binary classification to implement their malware detection after doing extensive feature reduction. This results in a simple identification of software being either malware or benign. This research comprehensively analyzes different hardware-based malware detectors by comparing different machine learning algorithms' accuracy with binary and multi-class classification models. Our experimental results indicate that when compared to complex machine learning models (e. g. Neural Network and Logistic), light-weight J48 and JRip algorithms perform better in detecting the malicious patterns even with the introduction of multiple types of malware. Although their detection accuracy slightly lowers, their robustness (Area Under the Curve) is still high enough that they deliver a reasonable false positive rate.

Citations (5)

Summary

We haven't generated a summary for this paper yet.