Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

l1-Norm Minimization with Regula Falsi Type Root Finding Methods (2105.00244v1)

Published 1 May 2021 in math.OC, stat.CO, and stat.ML

Abstract: Sparse level-set formulations allow practitioners to find the minimum 1-norm solution subject to likelihood constraints. Prior art requires this constraint to be convex. In this letter, we develop an efficient approach for nonconvex likelihoods, using Regula Falsi root-finding techniques to solve the level-set formulation. Regula Falsi methods are simple, derivative-free, and efficient, and the approach provably extends level-set methods to the broader class of nonconvex inverse problems. Practical performance is illustrated using l1-regularized Student's t inversion, which is a nonconvex approach used to develop outlier-robust formulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.